Naphtho[1,8-cd][1,2,6]thiadiazine

By Roy Dietz

(National Chemical Laboratory, Teddington, Middlesex)

CURRENT interest¹ in sulphur-nitrogen heterocycles and the recent demonstration² that the blue product of the methylation of 1H-naphtho-[1,8-de]triazine is 2-methylnaphtho[1,8-de]triazine (I) prompted this preliminary report of the preparation of an isoconjugate heterocycle, naphtho-[1,8-cd][1,2,6]thiadiazine (II).

Sachs³ obtained from 1,8-diaminonaphthalene and thionyl chloride a black infusible solid, $C_{10}H_8NSO$, which was soluble only in pyridine. Reaction of o-phenylenediamine with thionyl chloride,⁴ sulphur dioxide,⁵ or N-sulphinylaniline⁶ gave 2,1,3-benzothiadiazole. The last reaction involved two moles of N-sulphinylaniline and was assumed⁶ to proceed by the elimination of aniline and sulphur dioxide from the bis-adduct, o- $C_6H_4(NH \cdot SO \cdot NHPh)_2$ (III).

Sulphur dioxide was not eliminated when 1,8diaminonaphthalene was heated in benzene with N-sulphinvlaniline. The sole product was 1H, 3Hnaphtho[1,8-cd][1,2,6]thiadiazine 2-oxide (IV), m.p. 178-180° (decomp.) (preheated bath), a colourless solid crystallising in plates from benzene. The diamine was regenerated by mild hydrolysis. When (IV) was heated, alone or in a solvent, naphtho[1,8-cd][1,2,6]thiadiazine (II) was formed. The heterocycle crystallised in dark plates [m.p. 139-141° (decomp.)] from blue solutions in hydrocarbons (λ_{max} , 658 m μ ; $\log_{10} \epsilon 2.76$) in which it was monomeric. Perkins² reported λ_{max} . 655 m μ $(\log_{10} \epsilon 2.76)$ for the triazine (I).

Cava and Schlessinger¹ have suggested that the chemical stability of naphtho[2,3-c][1,2,5]thiadiazole, which incidentally had been reported earlier⁵ albeit with a different melting point, reflects a significant degree of tetracovalent character of the sulphur atom (Va). Physical studies7 of 2,1,3-benzothiadiazole, however, imply that the o-quinonoid structure (cf. Vb) is important in the ground state. Such structures are not feasible for the thiadiazine (II), which was hydrolysed readily by base to 1,8-diaminonaphthalene. In contrast to the similar ultraviolet absorption of (I) and (II), that of 2-methyl-1,2,3benzotriazole (λ_{max} . 274 m μ)⁸ is quite different from that of 2,1,3-benzothiadiazole $(\lambda_{max.} 310 \text{ m}\mu)^9$.

The isolation of an intermediate dihydro-oxide VI [m.p. 150-151.5 (decomp.)] from the reaction of N-sulphinyl aniline and 1,2-diaminonaphthalene suggests that adducts like (III) are not involved in the formation of thiadiazoles from ortho-diamines and N-sulphinylamines.

Satisfactory analytical and spectral data have been obtained for the new compounds.

(Received, December 21st, 1964.)

- ¹ M. P. Cava and R. H. Schlessinger, Tetrahedron Letters, 1964, No. 50, 3815.
- ² M. J. Perkins, J., 1964, 3005. ³ F. Sachs, Annalen, 1909, 365, 149.

- ⁴O. Hinsberg, Ber., 1809, 32, 2895.
 ⁵W. T. Smith, jun., and W.-Y. Chen, J. Org. Chem., 1962, 27, 676.
 ⁶V. G. Pesin, A. M. Khaletskii and C. Chao, J. Gen. Chem. U.S.S.R., 1957, 27, 1643.
 ⁷V. Luzzati, Acta Cryst., 1951, 4, 193; V. Dobyns and L. Pierce, J. Amer. Chem. Soc., 1963, 85, 3553.
 ⁸D. DalMonte, A. Mangini, R. Passerini, and C. Zauli, Gazzetta, 1958, 88, 977.
 ⁸L. O. DalMonte, A. D. Malarit, R. Comp. U.S.S. P. 1087, 27, 189.
- ⁹ L. S. Efros and R. M. Levit, J. Gen. Chem. U.S.S.R., 1955, 25, 183.